
Abstract- Cardiac gap junctions (GJs) form low resistance 
pathways along which the electrical impulse flows rapidly and 
repeatedly between all the cells of the myocardium, enabling 
coordinated contraction of the heart. In many heart diseases, 
electrical coupling through GJ channels between cardiomyocytes 
is down regulated. We set up a mathematical model of a chain of 
myocardial fibers to study how changing the coupling affects the 
activity of autorhythmic myocytes. While uncoupling blocked 
the propagation of excitation from autorhythmic myocytes to 
surrounding quiescent but excitable cells, different degrees of 
uncoupling increased the automaticity of the cells. Our modeling 
data suggests that the number of autorhythmic cells plays a key 
role in the excitation of autorhythmic cells and the conduction of 
impulses. We conclude that the degree of uncoupling between 
cardiomyocytes, induced by pathological processes, may 
generate ectopic foci, tachyarrhythmias being the outcome. 
Keywords - gap junctions, arrhythmia, computer simulation, 
intercellular communication 
 
 

I. INTRODUCTION 
 
Gap junctions (GJs) contain channels that connect 

neighboring cells, forming a pathway for the direct exchange 
of ions and small molecules of up to 1kDa between the 
cytoplasmic compartments of adjacent cells [1]. In the heart, 
GJs form low resistance pathways along which the electrical 
impulse flows rapidly and repeatedly between all cells of the 
myocardium. Furthermore, GJs form longitudinal and 
transverse electrical channels on the cell membranes of the 
cardiomyocytes. The conductance between myocytes varies 
from 0.25 to 2.5µS [2]. 

 The active and passive properties of plasma membrane 
channels change in many diseases [2,3]. Abnormal cellular 
coupling via GJs may induce a series of pathophysiological 
conditions. In the heart, GJ intercellular communication is the 
dominant factor in arrhythmogenesis. Decreased GJ coupling 
between cardiac myocytes may reduce the propagation 
velocity, and severe uncoupling can block the propagation of 
the impulse, which facilitates the genesis of reentry 
arrhythmias [3-5]. On the other hand, in a study with a SA 
node model cell coupled to a real, isolated ventricular 
myocyte [6], it was found that reducing the conductance 
between cells affected the electrical load on the SA model 
cell, which led to variations in its firing frequency. That 
means, the coupling state of autorhythmic cells and 
neighboring cells not only determines the propagation of 
excitation from the autorhythmic cells to the neighboring 
quiescent excitable cells, but also affects the autorhythmicity 
of the autorhythmic cells themselves [2].  

In the present study, we used a mathematical model to 

investigate the effects of altered coupling on the interaction of 
autorhythmic cells and neighboring myocytes. 

 
 

II. METHODS 
 

The model contained a variable number (1, 2, 4, 8 or 16) 
of autorhythmic cells (ARC) as the pacemaker. Forty 
quiescent but excitable cells (QC) were connected to the ARC 
(Fig. 1). QCs were represented by the Luo-Rudy dynamic 
(LRd) model of the mammalian ventricular myocyte [7]. In 
this model, the action potential was numerically constructed 
from ionic processes formulated on the basis of experimental 
data obtained mainly from guinea pig heart. ARCs were 
constructed according to a slightly modified LRd model, in 
which an inward current was activated during the phase 4 
spontaneous stage to mimic ischemia/reperfusion injury. The 
basic cycle length of ARC in complete isolation from 
neighboring cells was 310 ms. GJ conductance between two 
adjacent ARCs was G1, and between QCs, G2. Boundary 
conductance between ARC and QC was set at G1. G1 and G2 
could be varied from 1.2 µS to 0.009375 µS and from 1.2 µS 
to 0.075 µS, respectively, in different experiments, to mimic 
the reduced coupling under ischemia/reperfusion conditions. 
The simulation process was programmed with Visual C++ 6.0, 
and codes from Dr. Rudy's website were used to modify the 
single LRd model cell. Computations were run on 7 
Pentium-III computers. Action potentials of cells at both ends 
of the chain were recorded and analyzed with Matlab (Ver. 
5.1, The MathWorks, Natick, MA). 
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Fig. 1 Schematic of the fiber chain model. Variable number of 
autorhythmic cells (ARC) (n=1, 2, 4, 8 or 16) interconnected 
with gap junction conductance G1. Forty quiescent but 
excitable cells (QC) interconnected with gap junction 
conductance G2. Boundary conductance between ARC and 
QC was set at G1. 
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III. RESULTS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

When G1 was low (0.009375µS), the action potential in 
ARC (cell-0) could not propagate(an example is shown in Fig. 
2). When G1 was high (0.15µS), the excitation spread from 
cell-0 and propagated through all cells in the chain (Fig. 3). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

The frequency of action potentials initiated in ARC 
increased with decreasing G1 (Fig. 4). Furthermore, the 
autorhythmicity of the ARC was suppressed with increasing 
G1. At the same G1, increasing the number of coupled ARCs 
elevated the frequency, while at higher G1 the effect of 
coupled cell number on the frequency was more significant 
than that at lower G1. 

The firing frequency of ARC also increased with 
decreasing G2 (Fig. 5). 

 

Fig. 2 Membrane potentials of cell-0 (dashed line) and 
cell-1 (solid line). N was set at 1, cell-0 was an ARC and 
Cell-1 was a QC. Note that the propagation of excitation 
from cell-0 to cell-1 was blocked. G1=0.009375µS, 
G2=1.2µS 

Fig. 3 Membrane potentials of cell-0 (dashed line) and the 
cell at another end of the chain (solid line). N was set at 16. 
The action potential conducted through every cell in the
chain. G1=0.15µS, G2=1.2µS 
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Fig. 5 Relationship between firing frequency of ARC and gap 
junction conductance G2. N=8 and G1=0.6µS. 

Fig. 4 Relationship between firing frequency of ARC and gap 
junction conductance G1. ARC number was set to 16 (filled 
circles), 8 (open circles), 4 (filled triangles), 2 (open 
triangles) or 1 (inverted triangles). G2=1.2µS, 0 Hz means all 
cells were at rest. 
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The larger the number of ARCs, the greater the initial 

conductance (G1) between ARCs at which ARCs produced 
excitation (Fig. 6). The excitation initiated in ARCs at G1 
values from 0.075 to 0.6 µS propagated successfully to QC 
when the number of connected ARCs was 16, and the range 
of G1 values over which propagation occurred was smaller 
with 8 than with 16 ARCs. 

 
IV. DISCUSSION 

 
Using a simplified model of the ventricular myocyte, we 

found that alterations of GJ conductance affected not only the 
propagation of the action potential but also the 
autorhythmicity of the pacemaker cardiomyocytes coupled to 
working ventricular myocytes. Although in the real 
ventricular myocardium the interactions among cells are more 
complicated than that in this study, our model provides a 
useful tool to study the active and passive 
electrophysiological properties of myocardial fibers. 

In the heart, the distribution of GJs is anisotropic, i.e., the 
densities of GJs differ, depending on the location of the 
membrane [3,4]. Gap junction channels are found almost 
exclusively in the intercalated disks at the ends of the 
cardiomyocytes. The propagation of excitation inside the 
myocyte mainly spreads along the longitudinal axis of the cell, 
but can also cross lateral GJ channels. Because of the relative 
scarcity of lateral GJs, the conduction velocity across lateral 
GJs is slower. The present model simplified the 
three-dimensional ventricular myocardium into a 
one-dimensional chain, ignoring lateral conduction, and 
provided a linear model with multiple cells for investigating 
the electrophysiology of myocardial conduction. 

In a series of studies, Rudy and co-workers [5] established 
a single cell model containing almost all the ion channels in 
the plasma membrane along with their intracellular 
components, and studied action potential propagation in 

anisotropic cardiac tissue. In the present study, we used a 
mathematical model to observe the relationship between GJ 
conductance and autorhythmicity. Our results are consistent 
with those of Wagner's group [6], who used a simulated 
autorhythmic cell coupled to real ventricular myocytes. 

In the present study, it was shown that the autorhythmic 
activity of ARC was released only over a specific range of GJ 
conductance, i.e., the firing frequency increased with 
decreasing intercellular conductance, and vice versa. In 
clinical situations, alterations of cardiac coupling can be 
induced by ischemia [3,4]. The decreased coupling between 
cardiomyocytes may result in the elevation of 
autorhythmicity in pacemaker cells or cells which become 
autorhythmic under pathological conditions, and finally 
develop into ectopic foci that induce tachyarrhythmias. On 
the other hand, the present study showed that when the 
number of autorhythmic cells was small, ARC could not drive 
surrounding quiescent cells. This suggests that only one or a 
few abnormal cells would have little effect, and that the 
heart's GJs are powerful in buffering the consequences of 
occasional “mistakes” by cardiac cells. 

In conclusion, changes of intercellular communication via 
GJs may affect both the autorhythmicity and the conductivity 
of myocardium and consequently play an important role in 
arrhythmogenesis. Modulation and/or regulation of cardiac 
coupling by drugs may contribute to the inhibition of 
tachyarrhythmias. Further studies combining mathematical 
models with physiological experiments should focus on the 
role of gap junctions in arrhythmogenesis. 
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Fig. 6 Effect of ARC number and G1 on the state of the model. 
Resting: all cells at rest; Conducting: action potential initiated 
in ARC and propagated to QCs; Blocked: action potential 
generated in ARC but propagation blocked 
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